毕 业 设 计(论文)
(说 明 书)
题 目:降压变电站毕业设计
姓 名: 曹佳琳
学 号: 5060120
平顶山工业职业技术学院
11年 5月 2日
平顶山工业职业技术学院
毕 业 设 计 (论文) 任 务 书
姓名 曹佳琳
专业 机电一体化
任 务 下 达 日 期 年 月 日
设计(论文)开始日期 年 月 日
设计(论文)完成日期 年 月 日
设计(论文)题目:
A·编制设计
B·设计专题(毕业论文)
指 导 教 师
系(部)主 任
年 月 日
平顶山工业职业技术学院
毕业设计(论文)答辩委员会记录
机电工程 系 机电一体化 专业,学生 于 年 月 日
进行了毕业设计(论文)答辩。
设计题目: 降压变电站毕业设计
专题(论文)题目:
指导老师:
答辩委员会根据学生提交的毕业设计(论文)材料,根据学生答辩情况,经答辩委员会讨论评定,给予学生 毕业设计(论文)成绩为 。
答辩委员会 人,出席 人
答辩委员会主任(签字):
答辩委员会副主任(签字):
答辩委员会委员: , , ,
, , ,
平顶山工业职业技术学院毕业设计(论文)评语
第 页
共 页
学生姓名: 曹佳琳 专业 机电一体化 年级 06
毕业设计(论文)题目: 降压变电站毕业设计
评 阅 人:
指导教师: (签字) 年 月 日
成 绩:
系(科)主任: (签字) 年 月 日
毕业设计(论文)及答辩评语:
摘 要
随着经济的发展和现代工业建设的迅速崛起,供电系统的设计越来越全面、系统,厂用电量迅速增长,对电能质量、技术经济状况、供电的可靠性指标也日益提高,因此对供电设计也有了更高、更完善的要求。设计是否合理,不仅直接影响基建投资、运行费用和有色金属的消耗量,也会反映在供电的可靠性和安全生产方面,它和企业的经济效益、设备人身安全密切相关。
变电站是电力系统的一个重要组成部分,由电器设备及配电网络按一定的接线方式所构成,他从电力系统取得电能,通过其变换、分配、输送与保护等功能,然后将电能安全、可靠、经济的输送到每一个用电设备的转设场所。作为电能传输与控制的枢纽,变电站必须改变传统的设计和控制模式,才能适应现代电力系统、现代化工业生产和社会生活的发展趋势。随着计算机技术、现代通讯和网络技术的发展,为目前变电站的监视、控制、保护和计量装置及系统分隔的状态提供了优化组合和系统集成的技术基础。
110KV变电站属于高压网络,该地区变电所所涉及方面多,考虑问题多,分析变电所担负的任务及用户负荷等情况,选择所址,利用用户数据进行负荷计算,确定用户无功功率补偿装置。同时进行各种变压器的选择,从而确定变电站的接线方式,再进行短路电流计算,选择送配电网络及导线,进行短路电流计算。选择变电站高低压电气设备,为变电站平面及剖面图提供依据。本变电所的初步设计包括了:(1)总体方案的确定(2)负荷分析(3)短路电流的计算(4)高低压配电系统设计与系统接线方案选择(5)继电保护的选择与整定。
随着电力技术高新化、复杂化的迅速发展,电力系统在从发电到供电的所有领域中,通过新技术的使用,都在不断的发生变化。变电所作为电力系统中一个关键的环节也同样在新技术领域得到了充分的发展。
目 录
摘要………………………………………………………………………………………………1
绪论……………………………………………………………………………………4
1.1、概况…………………………………………………………………………………………4
1.2、变电站综合自动化系统的设计原则………………………………………………………4
第二章 所用电接线设计和所用变压器的选择…………………………………………………5
2.1、变压器的选择……………………………………………………………………………5
2.2、所用电接线方式……………………………………………………………………………5
2.3、 主接线选择原则……………………………………………………………………………5
2.4、电气主接线形式的确定……………………………………………………………………7
第三章 短路电流的计算………………………………………………………………………11
3.1、短路的概念…………………………………………………………………………………11
3.2、短路电流的暂态过程和短路电流种类……………………………………………………12
3.3、短路电流的计算……………………………………………………………………………12
3.4、在最大运行方式下的短路电流……………………………………………………………16
3.5、短路电流计算结果…………………………………………………………………………23
第四章 主要电气设备选择……………………………………………………………………25
4.1、高压断路器的选择………………………………………………………………………25
4.2、隔离开关的选择…………………………………………………………………………26
4.3、各级电压母线的选择……………………………………………………………………26
4.4、绝缘子和穿墙套管的选择………………………………………………………………27
4.5、电流互感器的配置和选择………………………………………………………………27
4.6、 电压互感器的配置和选择……………………………………………………………28
4.7、各主要电气设备选择结果一览表………………………………………………………30
致谢……………………………………………………………………………………………31
参考文献………………………………………………………………………………………32
第一章 绪论
1.1、 概 况
变电站是电力系统中不可缺少的重要环节,对电网的安全和经济运行起着举足轻重的作用,如果仍然依靠原来的人工抄表、记录、人工操作为主,将无法满足现代电力系统管理模式的需求;同时用于变电站的监视、控制、保护,包括故障录波、紧急控制装置,不能充分利用微机数据处理的大功能和速度,经济上也是一种资源浪费。而且社会经济的发展,依赖高质量和高可靠性的电能供应,建国以来,我国的电力事业已经获得了长足的发展。随着电网规模的不断扩大、电力分配的日益复杂和用户对电能的质量的要求进一不提高,电网自动化就显得极为重要;
近年来我国计算机和通信技术的发展及自动化技术的成熟,发展配电网调度与管理自动化以具备了条件。变电站在配电网中的地位十分重要,它担负着电能转换和电能重新分配的繁重任务,对电网的安全和经济运行起着举足轻重的作用。因此,变电站自动化既是实现自动化的重要基础之一,也是满足现代化供用电的实时,可靠,安全,经济运行管理的需要,更是电力系统自动化EMS和DMS的基础。
变电站综合自动化是将变电站二次设备(包括控制、信号、测量、保护、自动装置及远动装置等)利用计算机技术和现代通信技术,经过功能组合和优化设计,对变电站执行自动监视、测量、控制和调节的一种综合性的自动化系统。它是变电站的一种现代化技术装备,是自动化和计算机、通信技术在变电站领域的 综合应用,它可以收集较齐全的数据和信息。它具有功能综合化、,设备、操作、监视微机化,结构分布分层化,通信网络光缆化及运输管理智能化等特征。变电站的综合自动化为变电站小型化、智能化、扩大监视范围及变电站的安全、可靠、优质、经济地运行提供了现代化手段和基础保证。
1.2、 变电站综合自动化系统的设计原则
1.在保证可靠性的前提下,合理和设置网络和功能终端。采用分布式分层结构,不须人工干预的尽量下放,有合理的冗余但尽量避免硬件不必要的重复。
2.采用开放式系统,保证可用性(Interoperability)和可扩充性(Expandability)。要求不同制造厂生产的设备能通过网络互连和互操作,同 时还要求以后扩建时,现有系统的硬件和软件能较方便的与新增设备实现互操作。
第二章
所用电接线设计和所用变压器的选择
2.1、变压器的选择
变电所的所用电是变电所的重要负荷,因此,在所用电设计时应按照运行可靠、检修和维护方便的要求,考虑变电所发展规划,妥善解决分期建设引起的问题,积极慎重地采用经过鉴定的新技术和新设备,使设计达到经济合理,技术先进,保证变电所安全,经济的运行。
所用变台数的确定:
一般变电所装设一台所用变压器,对于枢纽变电所、装有两台以上主变压器的变电所中应装设两台容量相等的所用变压器,互为备用,如果能从变电所外引入一个可靠的低压备用电源时,也可装设一台所用变压器。根据如上规定,本变电所选用两台容量相等的所用变压器。
所用变压器的容量应按所用负荷选择。计算负荷可按照下列公式近似计算:
S=照明负荷+其余负荷×0.85(kVA)
所用变压器的容量:Se≥S=0.85∑P十P照明(kVA)
S=0.85(30+6.5+0.15×32+2.7×3+10.5+l 3+0.96+8)+20+l6
=105.58l (kVA)
根据容量选择所用电变压器如下:
型号:SL7—125/l0;容量为:125(kVA)
连接组别号:Yn,yn0 调压范围为:高压:±5%
阻抗电压为(%):4
2.2、所用电接线方式:
一般有重要负荷的大型变电所,380/220V系统采用单母线分段接线,两台所用变压器各接一段母线,正常运行情况下可分列运行,分段开关设有自动投入装置。每台所用变压器应能担负本段负荷的正常供电,在另一台所用变压器故障或检修停电时,工作着的所用变压器还能担负另一段母线上的重要负荷,以保证变电所正常运行。
2.3、 主接线选择原则
电气主接线是指发电厂或变电站中的一次设备按照设计要求连接起来表示生产、汇集和分配电能的电路,也称为主电路.主接线形式于电力系统原始资料,发电厂,变电站本身运行的可靠性,灵活性和经济性的要求等密切相关,并且对电气设备的选择,配电装置布置,继电保护和控制方式的拟定都有较大的影响。
电气主接线是由高压电器通过主接线,按其功能要求组成接受和分配电能的电路,组成为传输强电流、高电压的网络,故又称为一次接线或电气主系统。主接线代表了发电厂或变电所电气部分主体结构,是电力系统的重要组成部分。它直接影响运行的可靠性、灵活性并对电器选择、配电装置布置、继电保护、自动装置和控制方式的拟定都有决定性的关系。因此,主接线的正确、合理设计,必须综合处理各方面的因素,经过技术、经济论证比较后方可确定。
对电气主接线的基本要求,概括地说应包括可靠性、灵活性和经济性三个方面。
安全可靠是电力生产的首要任务,保证供电可靠是电气主接线最基本的要求。停电不仅使发电厂造成损失,而且对国民经济各部门带来的损失将更加严重,往往比少发电能的价值大几十倍,至于导致人身伤亡、设备损坏、产品报废、城市生活混乱等经济损失和政治影响,更是难以估量。因此,主接线的接线形式必须保证供电可靠。因事故被迫中断供电的机会越少,影响范围越小,停电时间越短,主接线的可靠程度就越高。
电气主接线应能适应各种运行状态,并能灵活地进行运行方式的转换。不仅正常运行时能安全可靠地供电,而且在系统故障或电气设备检修及故障时,也能适应调度的要求,并能灵活、简便、迅速地转换运行方式,使停电时间最短,影响范围最小。因此,电气主接线必须满足调度灵活、操作方便的基本要求,既能灵活地投、切某些机组、变压器或线路,调配电源和负荷,又能满足系统在事故、检修及特殊运行方式下的调度要求,不致过多地影响对用户的供电和破坏系统的稳定运行,即具有灵活性。
在设计主接线时,主要矛盾往往发生在可靠性与经济性之间。欲使主接线可靠、灵活,必然要选用高质量的设备和现化的自动装置,从而导致投资费用的增加。因此,主接线的设计应在满足可靠性和灵活性的前提下做到经济合理。一般应当从以下几方面考虑:
(1)投资省
主接线应简单清晰,以节省开关电器数量,降低投资;要适当采用限制短路电流的措施,以便选用价廉的电器或轻型电器;二次控制与保护方式不应过于复杂,以利于和节约二次设备及电缆的投资。
(2)占地面积少
主接线设计要为配电布置创造节约土地的条件,尽可能使占地面积减少。同时应注意节约搬迁费用、安装费用和外汇费用。对大容量发电厂或变电所,在可能和允许条件下,应采取一次设计,分期投资、投建,尽快发挥经济效益。
(3)电能损耗少
在发电厂或变电所中,正常运行时,电能损耗主要来自变压器,应经济合理地选择变压器的型式、容量、和台数,尽量避免两次变压而增加电能损耗。
2.4、电气主接线形式的确定
目前变电所常用的主接线形式有:单母线、单母线分段、单母线分段带旁路、双母线、双母线分我们在比较各种电气主接线的优劣时,主要考虑其安全可靠性、灵活性、经济性三个方面。首先,在比较主接线可靠性的时候,应从以下几个方面考虑:①断路器检修时,能否不影响供电;②线路、断路器或母线故障时以及母线或隔离开关检修时,停运出线回路数的多少和停电时间的长短,以及能否保证对Ⅰ、Ⅱ类用户的供电;③变电站全部停电的可能性;④大型机组突然停电时,对电力系统稳定性的影响与后果因素。其次,电气主接线应该能够适应各种运行状态,并且能够灵活地进行运行方式的切换。不仅正常时能安全可靠的供电,而且在电力系统故障或电气设备检修时,也能够适应调度的要求,并能灵活、简便、迅速地切换运行方式,使停电的时间最短,影响的范围为最小。再次,在设计变电站电气主接线时,电气主接线的优劣往往发生在可靠性与经济性之间,欲使电气主接线可靠、灵活,必然要选用高质量的电气设备和现代化的自动化装置,从而导致投资的增加。因此,电气主接线在满足可靠性与灵活性的前提下做到经济合理就可以了。
参考《35~110KV变电所设计规范》
第3.2.3条:35~110KV线路为两回及以下时,宜采用桥形线路变压器组或线路分支接线。超过两回时,宜采用扩大桥形单母线或单母分段的接线形式,35~63KV线路为8回及以上时,亦可采用双母线接线,110KV线路为6回及以上时宜采用双母线接线。
第3.2.4条:在采用单母线、分段单母线或双母线的35~110KV主接线中,当不允许停电检修断路器时,可以设置旁路设施。
当有旁路母线时,首先宜采用分段断路器或母联断路器兼做旁路断路器的接线,当110KV线路为6回及以上,35~63KV线路为8回及以上时,可装设专用的旁路断路器,主变压器35~110KV,有条件时,亦可接入旁路母线,采用断路器的主接线不宜设旁路设施。
第3.2.5条:当变电站装有两台主变时,6~10KV侧宜采用分段单母线。线路为12回及以上时亦可采用双母线。当不允许停电检修断路器时,可设置旁路设施。
综合以上规程规定,结合本变电站的实际情况,110KV侧有4回出线(近期2回,远景发展2回),35KV侧有4回出线,10KV侧有11回出线(近期9回,远景发展2回)。故可对各电压等级侧主接线设计方案作以下处理:
(1)110kv侧:
110kv侧是本站的进线段,它对本站的可靠性有很大影响。下面拟定两种接线方案。
图2-1
单母分段的适用范围:
(1)6~10kv配电装置出线回路数为6回及以上时。
(2)35~66kv配电装置出线回路数为6~8回时。
(3)110kv~220kV配电装置出线回路数为3~4回时。
双母接线的适用范围
当母线回路数或母线上电源较多、输送和穿越功率较大、母线故障后要求迅速恢复供电、母线或母线设备检修时不允许影响对用户的供电、系统运行调度对接线的灵活性有一定要求时采用,各级电压采用的具体条件如下:
(1)6~10kv配电装置,当短路电流较大、出线需要带电抗器时。
(2)35~66kV配电装置,当出线回路数超过8回时,或连接的电源较多、负荷较大时。
(3)110~220kv配电装置出线回路数为5回及以上时,或当110kv~220kv配电装置,在系统中后重要地位,出线回路数为4回及以上时。
表2-2 单母分段与双母接线比较
方案
项目 方案I 单母分段 方案II 双母接线
可靠性 用断路器把母线分段后,对重要用户可从不同段引出两个回路,保证不间断供电,可靠。 供电可靠,通过两组母线隔离开关的倒换操作,可以轮流检修一组母线而不致使供电中断;一组母线故障后,能迅速恢复供电;检修任一回路的母线隔离开关时,只需断开此隔离开关所属的一条回路和与此隔离开关相连的该组母线,其它回路均可通过另外一组母线继续运行。
灵活性 当一回线路故障时,分段断路器自动将故障段隔离,保证正常段母线不间断供电,不致使重要用户停电。 调度灵活,各个电源和各个回路负荷可以任意分配到某一组母线上,能灵活地适应电力系统中各种运行方式调度和潮流变化的需要。
综合本站实际情况,110kv级是本站的进线侧,而且不需要经常倒线操作,它对本站的供电可靠性至关重要。因此选择方案Ⅰ,即单母分段接线。
(2)35kv侧:
35kv侧是本站的一个出线电压等级,它向郊区一、郊区二、水泥厂一、水泥厂二供电。这里、级所占比重比较高。对35kv侧的主接线设计了两种方案:
表2-3 单母分段与单母接线比较
方案
项目 方案I 单母分段 方案II 单母接线
可
靠
性 用断路器把母线分段后,对重要用户可从不同段引出两个回路,保证不间断供电,可靠。 灵活性和可靠性差,当母线或母线隔离开关故障或检修时,必须断开它所连接
的电源,与之相连的所有电力装置在整个检修期间均需停止工作。此外,在出线断路器检修期间,必须停止该回路的供电。
灵
活
性 当一回线路故障时,分段断路器自动将故障段隔离,保证正常段母线不间断供电,不致使重要用户停电。
图2-2
单母线接线的适用范围:
一般适用于一台主变压器的以下三种情况:
(1)6~10kv配电装置的出线回路数不超过5回。
(2)35~66kv配电装置的出线回路数不超过3回。
(3)110kv~220kv配电装置的出线回路数不超过2回。
根据本站实际情况,在35KV负荷中一、二类负荷比较大,发生断电时,会造成生产机械的寿命缩短产品质量下降和一定的经济损失.因此要尽可能保证其供电可靠性。因此选择方案Ⅰ,即单母分段接线。
(3)10kv侧:
对10kv侧的主接线拟定了两种方案:
图2-3
单母线分段接线的优缺点:
优点:①用断路器把母线分段后,对重要用户可以从不同段引出两个回路,有两个电源供电;②当一段母线发生故障,分段断路器自动将故障段切除,保证正常段母线不间断供电和不致使大面积停电。
缺点:①当一段母线或母线隔离开关故障或检修时,该段母线的问路都要在检修期间内停电;②当出线为双回路时,常使架空线路出现交叉跨越;②扩建时密向两个方向均衡扩建。
双母线接线的伏缺点:
优点:
(1)供电可靠。通过两组母线隔离开关的倒换操作,可以轮流检修一组母线而不致使供电中断;一组母线故障后,能迅速恢复供电;检修任一回路的母线隔离开关时,只需断开此隔离开关所属的一条回路和与此隔离开关相连的该组母线,其它回路均可通过另外一组母线继续运行,但其操作步骤必须正确。例如:欲检修工作母线,可把全部电源和线路倒换到备用母线上。其步骤是:先合上母联断路器两例的隔离开关,再合母联断路器QF,向备用母线充电,这时,两组母线等电位,为保证不中断供电,按“先通后断”原则进行操作,即先接通备用母线上的隔离开关,再断开工作母线上的隔离开关。完成转换后,再断开母联QF及其两侧的隔离开关,即可使原工作母线退出运行进行检修。
(2)调度灵活。各个电源和各个回路负荷可以任意分配到某一组母线上,能灵活地适应电力系统中各种运行方式调度和潮流变化的需要。通过倒闸操作可以组成各种运行方式。例如:当母联断路器闭合,进出线分别接在两组母线上,即相当于单母线分段运行;当母联断路器断开,一组母线运行,另一组母线备用.全部进出线均接在运行母线上,即相当于单母线运行,两组母线同时工作,并且通过母联断路器并联运行,电源与负荷平均分配在两组母线上,即称之为固定连接方式运行。这也是目前生产中最常用的运行方式,它的母线继电保护相对比较简单。
根据系统调度的需要,双母线还可以完成一些特殊功能。例如:用母联与系统进行同期或解列操作;当个别回路需要单独进行试验时(如线路检修后需要试验),可将该回路单独接到备用母线上运行;当线路利用短路方式熔冰时,亦可用一组备用母线作为熔冰母线,不致影响其它回路工作。
(3)扩建方便。向双母线左右任何方向扩建,均不会影响两组母线的电源和负荷自由组合分配,在施工中也不会造成原有回路停电。当有双回架空线路时,可以顺序布置,以致连接不同的母线段时,不会如单母线分段那样导致出线交叉跨越。
(4)便于试验。当个别回路需要单独进行试验时,可将该回路分开。
缺点:
(1)增加了电气设备的投资。
(2)当母线故障或检修时,隔离开关作为倒闸操作电器需在隔离开关和断路器之间装设闭锁装置。
(3)当馈出线断路器或线路侧隔离开关故障时停止对用户供电。
根据本站实际情况,在10KV负荷中,印染、毛纺厂、针织厂、棉纺厂、橡胶厂、市区一、二类负荷比较大。若发生停电对企业造成出现次品,机器损坏,甚至出现事故,对市区医院则造成不良社会影响,严重时造成重大经济损失和人员伤亡,必须保证其供电可靠性。且此电压等级出线回数多,需经常倒换。因此选择方案Ⅱ双母接线。
表2—4 主接线方案表
110kv 35kv 10kv
单母分段接线 单母分段 双母接线
3.1、短路的概念
电力系统不可避免会发生短路事故。短路事故威胁着电网的正常运行中,并有可能损坏电气设备。因此,在电力系统的设计和运行中,都要对供电网络进行短路电流计算,以便正确地选用和调整继电保护装置,正确地选择电气设备,确保电力系统的安全、可靠运行。
短路的种类有以下几种:
(1)三相短路。
(2)两相短路。
(3)两相短路接地。
(4)单相短路(接地)。
三相短路是对称短路,此时三相电流和三相电压仍然是对称的,只是三相电流特大。除三相短路外的其他短路都是不对称性短路,每相电流和电压数值不相等,相角也不同。
3.2、短路电流的暂态过程和短路电流种类
3.2.1.短路电流的暂态过程
当电力系统发生三相短路时,由于短路回路存在着电感,电流不能突变,因此有一个暂态过程。短路电流随时间变化,最后达到稳定值。
短路全电流id由对称的周期分量和不对成的非周期分量两部分合成,即。周期分量先开始衰减,然后逐渐增加到稳态值。非周期分量按指数规律衰减,其衰减时间常数为0.05-0.2。
3.2.2.计算各短路电流的目的
(1) 短路冲击电流:用来校验电气设备和母线的动稳定。
(2) 短路全电流最大有效值Ich(第一周期短路全电流有效值):用来校验电气设备和母线的动稳定。
(3)超瞬变短路电流有效值I′:用来作继电保护的整定计算和校验断路器的短流量。
(4) 短路后0.2秒后的短路电流周期分量有效值:用来校验断路器的断流量。
(5)稳态短路电流有效值:用来校验电气设备和载流部分的热稳定。
(6) 短路后0.2S后的短路容量:用来校验断路器的遮断容量。
3.2.3 短路电流的计算
一、为了简化短路电流的计算方法,在保证计算精度的情况下,忽略次要因素的影响,做出一下规定:
(1) 所有的电源电动势相位角均相等,电流的频率相同,短路前,电力系统的电势和电流是对称的。
(2) 认为变压器是理想变压器,变压器的铁心始终处于不饱和状态,即电抗值不随电流的变化而变化。
(3) 输电线路的分布电容略去不计。
(4) 每一个电压级采用平均电压,这个规定在计算短路电流时,所造成的误差很小。因为电抗器的阻抗通常比其他元件阻抗大的多。
(5) 计算高压系统短路电流时,一般只计及发电机、变压器、电抗器、线路等元件的电抗,因为这些元件X/3>R时,可以略去电阻的影响。
(6) 短路点离同步调相机和同步电动机较近时,应该考虑对短路电流值的影响。有关感应电动机对电力系统三相短路冲击电流的影响:在母线附近的大容量电动机正在运行时,在母线上发生三相短路,短路点的电压立即降低。此时,电动机将变为发电机运行状态,母线上电压低于电动机的反电势。
(7) 在简化系统阻抗时,距短路点远的电源与近的电源不能合并,两个容量相差很大的电源不能够合并。
(8) 以供电电源为基准的电抗标幺值>3.5,可以认为电源容量为无限大容量的系统,短路电流的周期分量在短路全过程中保持不变。
二、短路电流的标幺值计算法
短路电流计算,根据电力系统的实际情况,可以采用标幺值或有名值计算,那种方法方便就采用那种方法.在高压系统中通常采用标幺值计算.
所谓标幺值,是实际值与基准值之比. 标幺值没有单位.设所选顶定的基准值电压,基准电流,基准容量及基准电抗分别为,,,,则这一元件的各已知量的标幺值分别为
,,
式中:
S、U、I、X------以有名单位表示的容量(MVA)、电压(KV)、电流(KA) 、电抗;
、、、-----以基准量表示的容量(KVA)、电压(KV)、电流(KA)、电抗。
工程计算上通常先选定基准容量和基准电压,与其相应的基准电流和基准电抗,均可由这两个基准值导出。
基准容量可采用电源容量或一固定容量,为了计算一致,通常采用=100MVA为基准容量;基准电压一般采用短路点所在级的网路平均额定电压,即=。
表3—1电力系统各元件阻抗值的计算公式
序号 元件名称 给定参数 电抗平均值 计算公式
通用式 =100MVA
1 发电机(或电动机) 额定容量
超瞬变电抗百分数
2 变压器 额定容量
阻抗电压百分比
3 10(6)KV电缆 平均电压
每千米电抗
线路长度L 0.08
4
10(6)KV
架空线路 平均电压
每千米电抗
线路长度L 0.4
三、短路电流
5
35KV
架空线路 平均电压
每千米电抗
线路长度L 0.425
电抗器 额定电压
额定电流
电抗百分数
的有名值计算法
在有名值计算法中,每个电气元件的单位是有名的,而不是相对值。在比较简单的网路低电压电网,常采用有名值计算法计算短路电流。采用此方法计算,须将各电压等级的电气元件参数都归算到同一电压等级上来。凡涉及发电机、变压器、电动机、电抗器等元件的百分数电抗值(铭牌上一般有标出)均应换算成有名值来计算。
电力系统各元件阻抗有名值的计算公式如下:
(1)发电机(电动机)
式中:
------发电机的超瞬变电抗值;
-----发电机以额定值为基准的超瞬变电抗的百分数;
------发电机额定容量(MVA);
(2)变压器:
当电阻值允许忽略不计时,
式中:
、、------变压器的电阻、电抗、阻抗;
------变压器以额定值为基准的阻抗电压百分数;
-------变压器短路损耗(KW)
(3)电抗器
式中:
-----电抗器以额定值为基准的电抗百分数; -----电抗器的额定电流和额定电压(KV、KA);
(4)线路
式中:
、-----线路单位长度的电阻和电抗();
-----线路运行的额定电压(KV); 3.4、在最大运行方式下的短路电流
图3-1系统接线简图
将有名值转换成标幺值:
1.选择基准容量 =100MA 基准电压为各级电压的平均额定电压。
线路电抗取X=0.4
线路L1:
线路L2:
线路L3:
110kv侧简化网络图:
图3-2
先将它化成星形:
图3-3
将、、化成、、。
将、合并成;将、合并成:
计算各电源点到短路点的转移电抗,化成△:
图3-4
为S2到短路点的转移电抗,是S1到短路点的转移电抗。它们分别应的计算抗:
又由于>3.5,故直接由
查0秒曲线得110kv侧短路电流:
查0.2秒曲线得110kv侧短路电流:
查4秒曲线得110kv侧短路电流:
冲击电流: (取1.8)
35kv侧简化网络图:
图3-5
图3-6
先将它化成星形:
图3-7
将、合并成;将、合并成:将、合并成:
计算各电源点到短路点的转移电抗,化成△:
图3-4
为S2到短路点的转移电抗,是S1到短路点的转移电抗。它们分别对应的计算电抗:
又由于>3.5,故直接由
查0秒曲线得35kv侧短路电流:
查0.2秒曲线得35kv侧短路电流:
查4秒曲线得35kv侧短路电流:
冲击电流: (取1.8)
10kv侧简化网络图:
图3-8
图3-6
将它化成星形;
图3-7
将、合并成;将、合并成:将、合并成:
计算各电源点到短路点的转移电抗,化成△:
图3-4
为S2到短路点的转移电抗,是S1到短路点的转移电抗。它们分别对应的计算电抗:
又由于>3.5,故直接由
查0秒曲线得10kv侧短路电流:
查0.2秒曲线得10kv侧短路电流:
查4秒曲线得10kv侧短路电流:
冲击电流:
(取1.8)
3.5、短路电流计算结果
表3-1 短路电流计算结果表
I"(KA) (KA) (KA) (KA)
110kv 2 1.16 2.1 5.09
35Kkv 4.45 4.24 4.55 11.33
10Kkv 14.04 13.34 14.14 35.74
第四章 主要电气设备选择
由于电气设备和载流导体得用途及工作条件各异,因此它们的选择校验项目和方法也都完全不相同。但是,电气设备和载留导体在正常运行和短路时都必须可靠地工作,为此,它们的选择都有一个共同的原则。
电气设备选择的一般原则为:
1.应满足正常运行检修短路和过电压情况下的要求并考虑远景发展。
2.应满足安装地点和当地环境条件校核。
3.应力求技术先进和经济合理。
4.同类设备应尽量减少品种。
5.与整个工程的建设标准协调一致。
6.选用的新产品均应具有可靠的试验数据并经正式签订合格的特殊情况下选用未经正式鉴定的新产品应经上级批准。
技术条件:
选择的高压电器,应能在长期工作条件下和发生过电压、过电流的情况下保持正常运行。
1.电压
选用的电器允许最高工作电压Umax不得低于该回路的最高运行电压Ug,即,Umax>Ug
2.电流
选用的电器额定电流Ie不得低于 所在回路在各种可能运行方式下的持续工作电流Ig ,即Ie>Ig
校验的一般原则:
1.电器在选定后应按最大可能通过的短路电流进行动热稳定校验,校验的短路电流一般取最严重情况的短路电流。
2.用熔断器保护的电器可不校验热稳定。
3.短路的热稳定条件
Qdt——在计算时间ts内,短路电流的热效应(KA2S)
It——t秒内设备允许通过的热稳定电流有效值(KA2S)
T——设备允许通过的热稳定电流时间(s)
校验短路热稳定所用的计算时间Ts按下式计算
t=td+tkd式中td ——继电保护装置动作时间内(S)
tkd——断路的全分闸时间(s)
4.动稳定校验
电动力稳定是导体和电器承受短时电流机械效应的能力,称动稳定。满足动稳定的条件是:
上式中 ——短路冲击电流幅值及其有效值
——允许通过动稳定电流的幅值和有效值
5.绝缘水平:
在工作电压的作用下,电器的内外绝缘应保证必要的可靠性。接口的绝缘水平应按电网中出现的各种过电压和保护设备相应的保护水平来确定。
由于变压器短时过载能力很大,双回路出线的工作电流变化幅度也较大,故其计算工作电流应根据实际需要确定。
高压电器没有明确的过载能力,所以在选择其额定电流时,应满足各种可能方式下回路持续工作电流的要求。
4.1、高压断路器的选择
高压断路器在高压回路中起着控制和保护的作用,是高压电路中最重要的电器设备。
型式选择:
本次在选择断路器,考虑了产品的系列化,既尽可能采用同一型号断路器,以便减少备用件的种类,方便设备的运行和检修。
选择断路器时应满足以下基本要求:
1.在合闸运行时应为良导体,不但能长期通过负荷电流,即使通过短路电流,也应该具有足够的热稳定性和动稳定性。
2.在跳闸状态下应具有良好的绝缘性。
3.应有足够的断路能力和尽可能短的分段时间。
3.应有尽可能长的机械寿命和电气寿命,并要求结构简单、体积小、重量轻、安装维护方便。
考虑到可靠性和经济性,方便运行维护和实现变电站设备的无由化目标,且由于SF6断路器以成为超高压和特高压唯一有发展前途的断路器。故在110KV侧采用六氟化硫断路器,其灭弧能力强、绝缘性能强、不燃烧、体积小、使用寿命和检修周期长而且使用可靠,不存在不安全问题。真空断路器由于其噪音小、不爆炸、体积小、无污染、可频繁操作、使用寿命和检修周期长、开距短,灭弧室小巧精确,所以须的操作功小,动作快,燃弧时间短、且于开断电源大小无关,熄弧后触头间隙介质恢复速度快,开断近区故障性能好,且适于开断容性负荷电流等特点。因而被大量使用于35KV及以下的电压等级中。所以,35KV侧和10KV侧采用真空断路器。又根据最大持续工作电流及短路电流得知
电压等级 型号 额定电压 额定电流 动稳定电流
110kV LW14-110 110KV 31500A 31.5 80KA
35kV ZN23-35 35KV 1600 25 63KA
10kV ZN-10 10KV 600A 8.7kA
4.2、隔离开关的选择
隔离开关是高压开关设备的一种,它主要是用来隔离电源,进行倒闸操作的,还可以拉、合小电流电路。
选择隔离开关时应满足以下基本要求:
1.隔离开关分开后应具有明显的断开点,易于鉴别设备是否与电网隔开。
2.隔离开关断开点之间应有足够的绝缘距离,以保证过电压及相间闪络的情况下,不致引起击穿而危及工作人员的安全。
3.隔离开关应具有足够的热稳定性、动稳定性、机械强度和绝缘强度。
4.隔离开关在跳、合闸时的同期性要好,要有最佳的跳、合闸尽可能降
低操作时的过电压。
5.隔离开关的结构简单,动作要可靠。
6.带有接地刀闸的隔离开关,必须装设连锁机构,以保证隔离开关的正确操作。
又根据最大持续工作电流及短路电流得知
电压等级 型号 额定电压 额定电流 动稳定电流
110kV GW4-110G 110KV 1000A 80
35kV GW4-35 35KV 1000A 50
10kV GN8-10 10KV 600A 75
4.3、各级电压母线的选择
选择配电装置中各级电压母线,主要应考虑如下内容:
⑴、选择母线的材料,结构和排列方式;
⑵、选择母线截面的大小;
⑶、检验母线短路时的热稳定和动稳定;
⑷、对35kV以上母线,应检验它在当地睛天气象条件下是否发生电晕;
⑸、对于重要母线和大电流母线,由于电力网母线振动,为避免共振,应校验母线自振频率。
110kV母线一般采用软导体型式。指导书中已将导线形式告诉为LGJQ-150的加强型钢芯铝绞线。
根据设计要求, 35KV母线应选硬导体为宜。LGJ—185型钢芯铝绞线即满足热稳定要求,同时也大于可不校验电晕的最小导体LGJ—70,故不进行电晕校验。
本变电所10KV的最终回路较多,因此10KV母线应选硬导体为宜。故所选LGJ—150型钢芯铝绞线满足热稳定要求,则同时也大于可不校验电晕的最小导体LGJ—70,故不进行电晕校验。
4.4、绝缘子和穿墙套管的选择
在发电厂变电站的各级? |